Probability-possibility DEA model with Fuzzy random data in presence of skew-Normal distribution

نویسندگان

  • B. Mehrasa Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
  • M. H. Behzadi Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده مقاله:

Data envelopment analysis (DEA) is a mathematical method to evaluate the performance of decision-making units (DMU). In the performance evaluation of an organization based on the classical theory of DEA, input and output data are assumed to be deterministic, while in the real world, the observed values of the inputs and outputs data are mainly fuzzy and random. A normal distribution is a continuous distribution which is extremely important in statistics because of its behavior.It is assumed in most cases that fuzzy random data are normally distributed, while such an assumption may not hold in practice. Therefore, using the normal distribution leads to erroneous conclusions. In the present study, we investigated DEA fuzzy random model under condition of probability -possibility, in the presence of a skew-normal distribution.In other words, this method embraced the previous methods in a specific state. Finally, a set of numerical example is presented to demonstrate the efficacy of procedure and algorithm.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic DEA with Using of Skew-Normal Distribution in Error Structure

The stochastic data envelopment analysis (SDEA) was developed considering the value ofinputs and outputs as random variables. Therefore, statistical distributions play an importantrole in this regard. The skew-normal (SN) distribution is a family of probability densityfunctions that is frequently used in practical situations. In this paper, we assume that the inputand output variables are skew-...

متن کامل

Comparing the Efficiency of Dmus with Normal and Skew-Normal Distribution using Data Envelopment Analysis

  Data envelopment analysis (DEA) is a nonparametric approach to evaluate theefficiency of decision making units (DMU) using mathematical programmingtechniques. Almost, all of the previous researches in stochastic DEA have been usedthe stochastic data when the inputs and outputs are normally distributed. But, thisassumption may not be true in practice. Therefore, using a normal distribution wi...

متن کامل

Inverse DEA Model with Fuzzy Data for Output Estimation

In this paper, we show that inverse Data Envelopment Analysis (DEA) models can be used to estimate output with fuzzy data for a Decision Making Unit (DMU) when some or all inputs are increased and deficiency level of the unit remains unchanged.

متن کامل

A Two-parameter Balakrishnan Skew-normal Distribution

In this paper, we discuss a generalization of Balakrishnan skew-normal distribution with two parameters that contains the skew-normal, the Balakrishnan skew-normal and the two-parameter generalized skew-normal distributions as special cases. Furthermore, we establish some useful properties and two extensions of this distribution. 

متن کامل

Two-stage DEA with Fuzzy Data

Data envelopment analysis is a nonparametric technique checking efficiency of DMUs using math programming. In conventional DEA, it has been assumed that the status of each measure is clearly known as either input or output. Kao and Hwang (2008) developed a data envelopment analysis (DEA) approach for measuring efficiency of decision processes which can be divided into two stages. The first stag...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 11

صفحات  41- 50

تاریخ انتشار 2017-10-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023